A review of the application of reinforced hydrogels and silk as biomaterials for intervertebral disc repair.
نویسندگان
چکیده
The degeneration of the intervertebral disc (IVD) within the spinal column represents a major pain source for many patients. Biological restoration or repair of the IVD using "compressive-force-resistant" and at the same time "cytocompatible" materials would be desirable over current purely mechanical solutions, such as spinal fusion or IVD implants. This review provides an overview of recent research on the repair of the inner (nucleus pulposus = NP) and the outer (annulus fibrous = AF) parts of the IVD tissue. Many studies have addressed NP repair using hydrogel-like materials. However, only a few studies have so far focused on AF repair. As the AF possesses an extremely low self-healing capacity and special attention to shear-force resistance is essential, special repair designs are required. In our review, we stated the challenges in IVD repair and highlighted the use of composite materials such as silk biomaterials and fibrin cross-linked reinforced hydrogels. We elaborated on the origin of silk and its many in tissue engineering. Furthermore, techniques such as electrospinning and 3D printing technologies allow the fabrication of versatile and functionalised 3D scaffolds. We summarised the research that has been conducted in the field of regenerative medicine over the recent years, with a special focus on the potential application and the potential of combining silk and reinforced - and thus mechanically tailored - hydrogels for IVD repair.
منابع مشابه
Synthesis and characterization of fiber reinforced polymer scaffolds based on natural fibers and polymer for bone tissue engineering application
A wide range of materials and scaffolding fabrication methods for bone tissue engineering have beenexplored recently. Fiber reinforced polymers (FRP) system appears to be a suitable system. By the exclusiveuse of biocompatible or bio-absorbable polymers and fibers, novel generation of scaffolds for applicationsin tissue engineering can be prepared. Mulberry Silk as highlighted...
متن کاملPhysicochemical Characteristics and Biomedical Applications of Hydrogels: A Review
Hydrogels are introduced to modem medicine as novel materials suitable for a variety ofbiomedical applications. Studying hydrogels as novel biomaterials has become a fast-developingand exciting research field during the last two decades. These interesting biomaterials have found awide range of application including contact lenses, vehicles for drug delivery and scaffold in tissueengineering and...
متن کاملHydrogels in acellular and cellular strategies for intervertebral disc regeneration.
Low back pain is an extremely common illness syndrome that causes patient suffering and disability and requires urgent solutions to improve the quality of life of these patients. Treatment options aimed to regenerate the intervertebral disc (IVD) are still under development. The cellular complexity of IVD, and consequently its fine regulatory system, makes it a challenge to the scientific commu...
متن کاملThe Application of Fiber-Reinforced Materials in Disc Repair
The intervertebral disc degeneration and injury are the most common spinal diseases with tremendous financial and social implications. Regenerative therapies for disc repair are promising treatments. Fiber-reinforced materials (FRMs) are a kind of composites by embedding the fibers into the matrix materials. FRMs can maintain the original properties of the matrix and enhance the mechanical prop...
متن کاملDegenerative Disc Disease: A Review of Cell Technologies and Stem Cell Therapy
Background & Aim: Low back pain is broadly documented as one of the most widespread pathologies in the advanced domain. Although the reasons of low back pain are uncountable, it has been meaningfully related to intervertebral disc degeneration. Present therapies for Intervertebral Disc (IVD) degeneration such as physical therapy and spinal fusion reduce symptoms' severity, but do not treat the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- European cells & materials
دوره 34 شماره
صفحات -
تاریخ انتشار 2017